Questions

Simplify
(a) $p^{4} \times p^{3}$
(b) $p^{7} \div p^{3}$
(c) $\left(\frac{3}{4}\right)^{-2}$

Solve for x

$$
2^{4 x} \times 4^{8}=8^{4}
$$

Work out $3 \frac{2}{5}-\frac{4}{6}$
Work out $3 \frac{2}{5} \div \frac{4}{6}$
$2^{4 x} \times 4^{8}=8^{4}$

The gradient of a radius of a circle is -3 . The tangent to the circle passes through the point $(6,2)$.

Work out the equation of the tangent

Simplify:

$$
\sqrt{200}
$$

Rationalise the denominator:

$$
\frac{4+\sqrt{3}}{5-\sqrt{2}}
$$

Express 60 as a product of prime factors

Find the HCF of 60 and 90

Factorise
(a) $x^{2}-8 x+16$
(b) $2 x^{2}-5 x-3$

Examples/

Maths Paper 1 - Higher

Key words

Convert 3200 into standard form $3200=3.2 \times 10^{3}$

Work out $4.2 \times 10^{4}+8 \times 10^{3}$.
Give your answer in standard form
$42,000+8000=50,000$
$50,000=5 \times 10^{4}$

Volume of a cube $=$ base x height x depth or length ${ }^{3}$

Surface area of a cuboid = The sum of the area of the 3 pairs of congruent rectangles

To simplify a surd - always find the largest square number that it can be divided by.
E.g. $\sqrt{200}=\sqrt{100} \times \sqrt{2}=10 \sqrt{2}$

The volume of a shape is $20 \mathrm{~cm}^{3}$.
The mass of the shape is 120 g .
Find the density.
Density $=\mathrm{g}: \mathrm{cm}^{3}$

$$
\begin{gathered}
120: 20 \\
6: 1 \\
\text { Density }=6 \mathrm{~g} / \mathrm{cm}^{3}
\end{gathered}
$$

	0°	30°	45°	60°	90°
Sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
Cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
Tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Undefined

Estimate = make the question easier by rounding

Evaluate = work out the answer

Express = Write in the different way
Simplify = Change the appearance
Angles in regular polygons:
Sum of the interior angles $=(n-2) \times 180$
To find an interior angle $=\frac{\text { total }}{n} n=$ number of angles/sides.

Sum of the exterior angles $=360^{\circ}$
To find an exterior angle $=\frac{360}{n} \quad n=$ number of angles/sides

$$
\begin{array}{ll}
x^{\frac{1}{3}}=\sqrt[3]{x} & x^{\frac{2}{3}}=(\sqrt[3]{x})^{2} \\
x^{-\frac{1}{3}}=\frac{1}{\sqrt[3]{x}} & x^{-4}=\frac{1}{x^{4}}
\end{array}
$$

