Candidate surname	Other names

$\Leftrightarrow \quad D B$ Solutions

Best Guess Paper 3H

Calculator

Within this booklet you will find my best guess at what might be on the next edexcel gcse maths paper.

There may be other topics that appear on paper 3, so please ensure that you continue to revise all topics.

The paper consists of 23 questions totalling 80 marks.

1(a) Expand and simplify

$$
\begin{aligned}
& 3(2 x+4)-2(x-1) \\
& 6 x+12-2 x+1
\end{aligned}
$$

(2)

1(b) Factorise fully

$$
\begin{aligned}
& 4 x^{2} y^{3}+6 x^{3} y \\
& 2 x^{2} y\left(2 y^{2}+3 x\right)
\end{aligned}
$$

1(c) Express on the number line

$$
\begin{aligned}
& -4<x+1 \leq 5 \\
& -1 \quad-1<-1 \\
& -5<x \leq 4
\end{aligned}
$$

(2)

Solutions available at www.bennettmaths.com
@BennettMaths on TikTok and YouTube

2 The scatter shows the maths scores attained by some students in Year 11.

2(a) Daisy scored 80 marks after revising for 4 hours.
Plot this information on the scatter graph

2(b) Sadie revised for 9 hours. Work out an estimate for the mark she would achieve

2(c) Daphne says that using the graph to estimate the mark achieved for somebody spending 18 hours revising would not be appropriate. Explain why?
 data set

Solutions available at www.bennettmaths.com
@BennettMaths on TikTok and YouTube

3 The table shows the heights of 60 trees

Height (h metres)	Frequency
$0<h \leqslant 4$	13
$4<h \leqslant 8$	24
$8<h \leqslant 12$	15
$12<h \leqslant 16$	6
$16<h \leqslant 20$	2

Freddie plots the frequency polygon below

Write down 2 things that are wrong with this graph
1.
 the midpoint
2.

The lines should be straight

4(a) Margot is going to play one game of snooker and one game of pool.
The probability that Margot wins a game of snooker is 0.9 .
The probability that Margot does not win a game of pool is 0.3 .

4(b) Work out the probability that Margot wins at both snooker and pool.

$$
0.9 \times 0.7=0.63
$$

Solutions available at www.bennettmaths.com @BennettMaths on TikTok and YouTube

5 Work out

$$
\frac{\left(3.1 \times 10^{3}\right)+\left(2.4 \times 10^{-2}\right)}{\left(4.2 \times 10^{2}\right)}
$$

Giving your answer in standard form, correct to 3 significant figures.

$$
7.38100952
$$

$$
7.38 \times 10^{0}
$$

(Total for Question 5 is 2 marks)

6
Simplify fully

$$
\begin{aligned}
& \left(4 a^{4} b c^{-3}\right)^{5} \\
& 4^{5}=1024 \\
& \left(a^{4}\right)^{5}=a^{20} \\
& \left(b^{5}=b^{5}\right. \\
& \left(c^{-3}\right)^{5}=c^{-15}
\end{aligned}
$$

7 Martha invests $£ 15200$.
She earns $x \%$ for the first year.
At the end of the first year she has a total of $£ 15656$.
For the next 2 years, Martha earns $2 x \%$.
Work out the total of her investment at the end of the third year.

$$
\begin{aligned}
& \frac{15656}{15200}=1.03=3 \% \text { increase } \\
& 15200 \\
& x=3 \quad 2 x=6 \\
& 15656 \times 1.06^{2}=17591.08
\end{aligned}
$$

8 Shape BCDEFG is an irregular hexagon.
Lines AC, HG \& IE are parallel.

Work out the size of angle $B C D$

$$
\begin{aligned}
& (n-2) \times 180 \\
& (6-2) \times 180=720 \\
& 720-112-155-93-71-235=54
\end{aligned}
$$

On the grid, enlarge the triangle by scale factor -1.5 with centre $(0,2)$
$-1.5\binom{4}{0}=\binom{-6}{0}$
$-1.5\binom{2}{2}=\binom{-3}{-3}$
$-1 \cdot 5\binom{4}{2}=\binom{-6}{-3}$
(Total for Question 9 is 2 marks)
$10 \quad \mathrm{~L}_{1}$ has the equation of $y=3 x-8 \longleftarrow$ gradient $=3$

Sam says that the two lines are perpendicular. Is she correct?

$$
\begin{aligned}
& 4 x+12 y=96 \\
& 12 y=-4 x+96
\end{aligned}
$$

$$
y=\frac{-4}{12} x+8 \leftarrow \text { gradient }=-\frac{1}{3}
$$

(Total for Question 10 is 3 marks)
11

Use the graph to solve the simultaneous equations

$$
\begin{aligned}
2-2 y & =x \\
2 y & =3 x-22
\end{aligned}
$$

(Total for Question 11 is 1 mark)

Solutions available at www.bennettmaths.com
@BennettMaths on TikTok and YouTube

12 The box plot shows information about the sales, in thousands of pounds, of Bennett's Bistro

Margot says,
' 50% of the sales data is below $£ 210,000$ as the highest value is $£ 420,000$ ' Margot is wrong.
(a) Explain why.

$$
m=200
$$

50% of data is below the median.
Which is 200,000

	Sales (£000s)
least value	30
lower quartile	80
median	170
upper quartile	260
greatest value	350

$$
\begin{align*}
& m=170 \tag{1}\\
& F G R=260-80=180
\end{align*}
$$

Shop

Sales ($£ 000 \mathrm{~s}$)
12(c) Compare the distributions of the sales of both eateries.
on average, Bennett's Bistro had bother sales as they have a Larger median. The Sales are more consistent at Buckley's cafe as they have a Smaller

IQ
(Total for Question 12 is 5 marks)
$13 \quad \mathrm{PQR}$ and QRS are triangles

Calculate the length of RS.
Give your answer correct to 3 significant figures.
You must show all of your working
$x=\sqrt{11^{2}+9.4^{2}-2 \times 11 \times 9.4 \times \cos (27)}$
$x=5.01$
$\underline{y}=5.01$
$\sin (51) \quad \sin (41)$
$y=\frac{5.01}{\sin (41)} \times \operatorname{Sin}(51)=5.93$

Solutions available at www.bennettmaths.com
@BennettMaths on TikTok and YouTube

14 The diagram shows a solid hemisphere
Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

(a) The diameter of the sphere is $12.3 \mathrm{~cm} . \quad r=6.15$

Work out the volume of the hemisphere.
$\frac{1}{2} \times \frac{4}{3} \times \pi \times 6.15^{3}=487.17 \mathrm{~cm}^{3}$
(b) Maggie says that $300 \mathrm{~cm}^{2}$ is the same value as $3000 \mathrm{~mm}^{2}$.

Is Maggie correct. Give a reason for your answer.

$$
\text { No, } C m^{2} \rightarrow \mathrm{Mm}^{2}=\times 10^{2}
$$

$$
300 \times 10^{2}=30000 \mathrm{~mm}^{2} \text { not } 3000 \mathrm{~mm}^{2}
$$

15 Katie has a pond containing some fish.
On Monday, she catches 45 fish and places a tag on them.
On Tuesday, she catches 240 fish, 18 of the fish have a tag on them.
Work out an estimate for the total number of fish in the pond.

16 The population of grey squirrels in Garstang in 2024 is 12,000 .
Population growth is given by the following iterative formula

$$
P_{n+1}=1.04 P_{n}+180
$$

Work out an estimate for the number of grey squirrels in Garstang in 2025, 2026 and 2027

$$
\begin{aligned}
& 12,000=\text { ANS } \\
= & 1.04(\text { ANS })+180
\end{aligned}
$$

2025

2026

(Total for Question 16 is 3 marks)

17 Here are the first four terms of a quadratic sequence.
4, 13, 26, 43
Write down an expression, in terms of n, for the nth term of the sequence

$$
\begin{gathered}
2 n^{2},\left(\begin{array}{l}
2,8,18,32 \\
4,13,26,43 \\
+2, \\
+3,+5,+8,+112^{-1} \\
+3+3
\end{array}\right. \\
\begin{array}{c}
3+6
\end{array}
\end{gathered}
$$

$$
2 n^{2}+3 n-1
$$

\qquad

Solutions available at www.bennettmaths.com @BennettMaths on TikTok and YouTube

18 Solve

$$
\frac{\frac{2 x+4}{5 x-1}+\frac{x+3}{4 x}-1=4}{20 x^{2}-4 x}
$$

$$
\begin{aligned}
& \frac{4 x(2 x+4)+(x+3)(5 x-1)}{4 x(5 x-1)}=\frac{8 x^{2}+16 x+5 x^{2}+14 x-3}{20 x^{2}-4 x} \\
& \frac{13 x^{2}+30 x-3}{20 x^{2}-4 x}-\frac{20 x^{2}-4 x}{20 x^{2}-4 x}=\frac{-7 x^{2}+34 x-3}{20 x^{2}-4 x} \\
& \frac{-7 x^{2}+34 x-3}{20 x^{2}-4 x}=4 \\
& -7 x^{2}+34 x-3=80 x^{2}-16 x \\
& 0=87 x^{2}-50 x+3 \\
& a=87 b=-50 c=3 \\
& \frac{50 \pm \sqrt{(-50)^{2}-(4 \times 87 \times 3)}}{2 \times 87} \quad x=0.0681 \\
& \frac{x=0.507}{2} \quad
\end{aligned}
$$

19

Points $A B D$ are on a circle such that:
$\mathrm{AB}=\mathrm{AD}$
Angle $\mathrm{ABD}=y^{0}$
Angle $\mathrm{BDC}=x^{\circ}$
Show that $\frac{1}{2} x+y=90$
Give reasons for your answer
$\widehat{A D B}=A \widehat{B D}$ base angles of an isosceles
triangle are equal.
$\hat{B D C}=\widehat{D A B}$ alternate segment theorem

$$
\begin{aligned}
& x+2 y=180 \\
& \frac{1}{2} x+y=90
\end{aligned}
$$

@BennettMaths on TikTok and YouTube

20

$$
f(x)=3 x^{2}-2 \quad g(x)=2 x+3
$$

(a) Find $\mathrm{fg}(2)$

$$
\begin{align*}
& 2(2)+3=7 \\
& 3(7)^{2}-2=145 \tag{2}
\end{align*}
$$

(b) Find $f^{-1}(x)$

$$
y=3 x^{2}-2
$$

$$
x=3 y^{2}-2
$$

$$
\frac{x+2}{3}=y^{2}
$$

$$
f^{-1}(x)=\sqrt[\pm]{\frac{x+2}{3}}
$$

(2)
$\frac{x+2}{3}=$
$\pm \sqrt{\frac{x+2}{3}}$
(c) Solve $f g(x)=g^{-1}(21)$

$$
\begin{align*}
& 3(2 x+3)^{2}-2=\frac{21-3}{2} \\
& 3\left(4 x^{2}+12 x+9\right)-2=9 \\
& 12 x^{2}+36 x+27-2=9 \\
& 12 x^{2}+36 x+25=9 \\
& 12 x^{2}+36 x+16=0 \\
& a=12 \quad b=36 \quad c=16 \\
& \frac{-36 \pm \sqrt{(36)^{2}-(4 \times 12 \times 16)}}{2 \times 12} \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& x=-0.5425 \\
& x=-2.457
\end{aligned}
$$

(Total for Question 20 is 8 marks)

21 Prove algebraically that the sum of the cubes of two consecutive odd numbers is always even.

$$
\begin{aligned}
& 2 n-1 \\
& 2 n+1
\end{aligned}
$$

$$
\begin{aligned}
& (2 n-1)^{3}+(2 n+1)^{3}=\text { even } \\
& (2 n-1)(2 n-1)(2 n-1)+(2 n+1)(2 n+1)(2 n+1) \\
& \left(4 n^{2}-4 n+1\right)(2 n-1)+\left(4 n^{2}+4 n+1\right)(2 n+1) \\
& \left(8 n^{3}-12 n^{2}+6 n-1\right)+\left(8 n^{3}+12 n^{2}+6 n+1\right) \\
& 16 n^{3}+12 n \\
& 2\left(8 n^{3}+6 n\right) \\
& \text { 1 } \\
& \text { multiple of } 2 \ldots \text { even }
\end{aligned}
$$

22 Anya measures a field.

The length AB measures 225 m correct to the nearest $5 \mathrm{~m} \pm 2 \cdot 5-$
The length BC measures 225 m correct to the nearest $5 \mathrm{~m} \pm 2.5$
Angle ABC measures 50° correct to the nearest degree. ± 0.5
Work out the upper bound for the area of the field.
You must show your working.

$$
\begin{aligned}
& \frac{1}{2} \times a \times 6 \times \sin (c) \\
& \frac{1}{2} \times 1227.5 \times 177.5 \times \sin (50.5) \\
& =15579.58 \mathrm{~m}^{2}
\end{aligned}
$$

23 Solve algebraically the simultaneous equations

$$
\begin{aligned}
& \begin{aligned}
& 2 x^{2}-y^{2}=17 \\
& x=1-2 y \\
& 2(1-2 y)(1-2 y)-y^{2}=17 \\
& 2\left(1-4 y+4 y^{2}\right)-y^{2}=17 \\
& 8 y^{2}-8 y+2-y^{2}=17 \\
& 7 y^{2}-8 y-15=0
\end{aligned} \\
& \begin{array}{l}
a=7 \quad b=-8 \quad c=-15 \\
y=\frac{8-\sqrt{(-8)^{2}-(4 \times 7 x-15)}}{2 \times 2} \quad x=1-2\left(\frac{30}{14}\right)=\frac{-46}{14} \text { or }-3.28 \\
y=2.14\left(\frac{30}{14}\right) \quad x=1-2(-1)=3 \\
y=-1
\end{array}, l
\end{aligned}
$$

